Biografia e Vita di: Georg Cantor

Studi infiniti

Georg Cantor
Geniale matematico, Georg Ferdinand Ludwig Philipp Cantor nacque il 3 marzo 1845 a Pietroburgo (l'attuale Leningrado), dove visse fino ad undici anni, per poi trasferirsi in Germania dove visse gran parte della sua vita. Suo padre, Georg Waldemar Cantor, decise di trasferirsi in Germania, pur essendo un commerciante di successo e un esperto agente di borsa, per motivi di salute. Sua madre, Maria Anna Bohm, fu un'importante musicista russa e sicuramente influenzò il figlio che si interessò alla musica imparando a suonare il violino.
Nel 1856, una volta trasferiti, vissero per alcuni anni a Wiesbaden dove Cantor frequentò il ginnasio. Terminati gli studi liceali a Wiesbaden con la sua famiglia Cantor si trasferì a Francoforte sul Meno dove frequentò dal 1862 i corsi di matematica e filosofia, prima all'Università di Zurigo poi a Berlino, dove fu allievo di E. E. Kummer, W. T. Weierstrass e L. Kronecker. Nel 1867 si laureò e nel 1869 ottenne la libera docenza presentando lavori relativi alla teoria dei numeri. Nel 1874, invece, vi fu l'evento sentimentale più importante nella vita del matematico: conobbe Vally Guttmann, amica di sua sorella e, dopo solo qualche mese, convolarono a nozze.
Successivamente, sotto l'influenza di Weierstrass, Cantor spostò il suo interesse verso l'analisi e più particolarmente verso lo studio delle serie trigonometriche. Nel 1872 venne nominato professore e nel 1879 ordinario all'Università di Halle.
Qui Cantor potè svolgere in tutta tranquillità i suoi difficili studi, che lo portarono a dare contributi fondamentali in vari settori, come quello dello studio delle serie trigonometriche, sulla non-numerabilità dei numeri reali o sulla teoria delle dimensioni, anche se divenne noto in ambiente accademico soprattutto per i suoi lavori sulla teoria degli insiemi. In particolare, a lui si deve la prima definizione rigorosa di "insieme infinito", così come pure la costruzione della teoria dei numeri transfiniti, sia cardinali che ordinali.
Cantor dimostrò infatti che gli infiniti non sono tutti uguali ma, similmente ai numeri interi, essi possono essere ordinati (cioè ne esistono alcuni più "grandi" di altri). Riuscì poi a costruire una completa teoria di questi che chiamò numeri transfiniti. L'idea di infinito è una delle più controverse della storia del pensiero. Basti pensare alla perplessità con cui i matematici accolsero il calcolo infinitesimale di Leibniz e Newton, che era interamente basato sul concetto di grandezze infinitesime (che essi chiamavano "evanescenti").
Anche se la teoria cantoriana degli insiemi fu in seguito modificata ed integrata, resta ancora oggi allo base dello studio delle proprietà degli insiemi infiniti. Le critiche e le accese discussioni che però furono espresse al suo apparire furono forse alla base degli stati di depressione che lo assalirono negli ultimi anni della sua vita. Già nel 1884 ebbe la prima manifestazione della malattia nervosa che lo colpì a più riprese fino alla morte.
Alla luce di una ricognizione biografica della sua vita, infatti, sembra probabile che all'insorgere di questa malattia abbia concorso, oltre all'incertezza sulla validità della sua opera, anche l'ostracismo scientifico e accademico dovuto soprattutto a L. Kronecker, che bloccò ogni suo tentativo di insegnare a Berlino. Da quel momento, insomma, Cantor trascorse la sua vita tra università e case di cura. Morì per un attacco di cuore il 6 gennaio 1918 mentre era ricoverato in una clinica psichiatrica.

Biografie di personaggi famosi e storici

Estratto dal sito web: Biografieonline.it sotto Licenza Creative Commons.